• Thermodynamics
  • Law Of Conservation Of Mass

Law of Conservation of Mass

The law of conservation of mass states that mass within a closed system remains the same over time. Discover more about the law of conservation of mass, including its importance, equations, and some examples of this law in action.

What is the Law of Conservation of Mass?

The law of conservation of mass states that

“The mass in an isolated system can neither be created nor be destroyed but can be transformed from one form to another”.

According to the law of conservation of mass, the mass of the reactants must be equal to the mass of the products for a low energy thermodynamic process.

It is believed that there are a few assumptions from classical mechanics which define mass conservation. Later the law of conservation of mass was modified with the help of quantum mechanics and special relativity that energy and mass are one conserved quantity. In 1789, Antoine Laurent Lavoisier discovered the law of conservation of mass.

Formula of Law of Conservation of Mass

Law of conservation of mass can be expressed in the differential form using the continuity equation in fluid mechanics and continuum mechanics as:

  • ρ is the density
  • t is the time
  • v is the velocity
  • ▽ is the divergence

Related Articles:

  • Law of Conservation of Momentum Derivation
  • Mass And Weight
  • Thermodynamic Processes

Law of Conservation of Mass  Examples

  • Combustion process: Burning of wood is a conservation of mass as the burning of wood involves Oxygen, Carbon dioxide, water vapor and ashes.
  • Chemical reactions: To get one molecule of H 2 O (water) with the molecular weight of 10, Hydrogen with molecular weight 2 is added with Oxygen whose molecular weight is 8, thereby conserving the mass.

Law of Conservation of Mass Problems

Q1. 10 grams of calcium carbonate (CaCO 3 ) produces 3.8 grams of carbon dioxide (CO 2 ) and 6.2 grams of calcium oxide (CaO). Represent this reaction in terms of law of conservation of mass. Ans: According to law of conservation of mass: Mass of reactants = Mass of products ∴ 10 gram of CaCO 3 = 3.8 grams of CO 2 + 6.2 grams of CaO 10 grams of reactant = 10 grams of products

Hence, it is proved that the law of conservation of mass is followed by the above reaction.

Frequently Asked Questions – FAQs

Why is there no change in mass during chemical reactions.

During a chemical reaction, atoms are neither created nor destroyed. The atoms of the reactants are just rearranged to form products. Hence, there is no change in mass in a chemical reaction.

Verify law of conservation of mass with an experiment

According to the law of conservation of mass, during any physical or chemical change, the matter is neither created nor destroyed. However, it may change from one form to another. Below, we have listed an experiment that will help you verify the law of conservation of mass. Requirements: H-shaped tube, also known as Landolt’s tube; Sodium chloride solution; silver nitrate solution. Procedure: Sodium chloride solution is taken in one limb of the H-tube and silver nitrate solution in the other limb as shown in the figure. Both the limbs are now sealed and weighed. Now the tubes are averted so that the solutions can mix up together and react chemically. The reaction takes place and a white precipitate of silver chloride is obtained. The tube is weighed after the reaction has taken place. The mass of the tube is found to be exactly the same as the mass obtained before inverting the tube. This experiment clearly verifies the law of conservation of mass.

If energy is neither created nor destroyed, what is the ultimate source of energy?

What happens to the mass of a burned object.

law of conservation of mass assignment

Stay tuned with BYJU’S for more such interesting articles. Also, register to “BYJU’S – The Learning App” for loads of interactive, engaging Physics-related videos and unlimited academic assistance.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Physics related queries and study materials

Your result is as below

Request OTP on Voice Call

law of conservation of mass assignment

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

R4SCI Logo

Conservation of Mass—It's the Law!

Engage: sandwich chemistry.

151552291

bread + cheese + ham = sandwich

What if we made up a chemical formula for the sandwich? Let’s say the formula for a sandwich is B d 2 C h H a 3 . That means there are 2 slices of bread, 1 slice of cheese and 3 slices of ham in every sandwich. So, the equation for a sandwich would look like this:

2 Bread + Cheese + 3 Ham  →   B d 2 C h H a 3

What do you notice about the number of bread, cheese, and ham slices before and after the sandwich is made?

Now, what if we wanted to make more than one sandwich? Click and drag the quantities to fill in the chart showing how many of each piece is needed for the sandwiches.

Explore 1: Conservation Clips

View the following short video clip demonstrating the law of conservation of mass. In your notebook, write a short explanation of what you saw. Why do you think this happened? Record your thoughts.

Next, view the video clip showing how the law of conservation of mass works with atoms. In your notebook, describe what you saw in the video.

What do you think would happen if there were twice as many zinc and sulfur atoms on the reactant (left) side of the reaction equation? Why? Record your thoughts.

Explain 1: Counting It Out

As you just saw in the videos, the number of each type of atom is the same before and after a reaction. If there are 5 sulfur atoms before a reaction, there will also be 5 sulfur atoms after the reaction. Atoms can’t just disappear! They might be in a different arrangement within new molecules that have formed, but there is the same number overall.

So, how do you know how many atoms are present in a chemical? The rule is to take the coefficient (the number in front of the chemical formula) multiplied by the subscript (the number to the lower right of the element symbols) for each atom in the formula. If there is no number, it represents a 1. For example:

   H 2 O has 2 atoms of hydrogen and 1 atom of oxygen.

C a C l 2  has 1 atom of calcium and 2 atoms of chlorine.

3 C 6 H 12 O 6  has 18 atoms of carbon, 36 atoms of hydrogen, and 18 atoms of oxygen. (Remember to multiply the coefficient 3 by each of the subscripts to get the total per atom.)

When an equation is written so that each type of atom has the same number of atoms in the reactants and products, we say the equation is balanced. For example:

Water_balance_web

Now, you try a few. Complete this short checkpoint activity to make sure you’ve got it. Sort each of the equations into the correct category—balanced or unbalanced—according to the law of conservation of mass.

Because the number of each type of atom on each side of the equation stays equal, we know that the total mass on each side is also equal. For example:

example%20of%20balanced%20mass_0

Just like you saw in the first video clip in the previous section, the mass of the flask before the reaction was the same as the mass of the flask after the reaction. This is the law of conservation of mass.

Be sure you have included this example and explanation in your notes!

Explore 2: Balancing Act

Now that you understand what the law of conservation of mass means and how to tell if an equation is balanced, let’s explore how to balance an unbalanced equation.

Go to the Balancing Equations Simulation ( //phet.colorado.edu/en/simulation/balancing-chemical-equations ). You will find a simulator that shows unbalanced equations and uses pictures of atoms to represent each chemical. (You may also use the Click to Run link in the following section to access the simulation.)

  • Once the simulation is running, make sure you’re on the introduction tab.
  • Click “Make Ammonia” at the top and “Balance Scales” at the bottom.
  • Click on the arrows next to each chemical formula to increase or decrease the number of each atom or molecule.
  • Experiment with this until the equation is balanced.
  • Record observations in your notebook about what you had to do to balance the equation.

Balancing Chemical Equations

Explain 2: Upholding the Law

OK, now it’s time to learn how to balance equations. In the simulation you just used, you saw that having multiples of a molecule is the way to increase the number of atoms needed for the equation to be balanced.

Watch the following video to see a few examples and to learn the steps for balancing equations. This method will help you balance without having pictures of atoms to look at. Be sure to take notes in your notebook, and write down the examples so you have something to look at later!

Now, it is time for you to check for understanding. If you struggle with a concept or process, go back into the resource to help clarify any misunderstanding.

Elaborate: Life Abides By the Law

photosynth_0

One exam ple is in the process of photosynthesis. The chemical equation for this process is

6 C O 2 + 6 H 2 O +   Light energy   §#8594; C 6 H 12 O 6 + 6 O 2 . 

Imagine if all of the coefficients were removed. What effect would that have on the equation? Would it still be balanced? What would that change about the interaction of the atoms? If the coefficient for carbon dioxide was an 8 instead of a 6, how would that affect the products in the reaction? In light of what you now know about balancing equations, explain your answers to these questions in your notebook.

Teacher Notes

Teacher Notes This resource is a compilation of text, videos, and other elements to create a scaffolded 5E learning experience for students. This is meant for Tier I instruction under the Response to Intervention (RtI) model for grades 10–12 and student expectation Chemistry (8)(D).

Be sure to review the entire resource and the related items before assigning it to, or working through it with, your students to check for prerequisite knowledge and skills as well as differentiation needs.

This resource can be used for instruction in a variety of ways. • Use with a single computer and projector. (This can be delivered in a traditional classroom.) • Use with a combination of teacher computer/projector and individual student computers (in a computer lab or other 1:1 environment). • Assign to students as work to do outside of school as part of a flipped classroom to allow for application, practice, and additional support during the school day. • Use with students as tutorials. • Share with parents to inform them about what their child is learning in school. • Use with students who are unable to participate in the traditional classroom environment.

The sandwich illustration and interactive activity are intended to give students a real-life example of balancing to which they can relate. The idea is for students to see that the number and types of ingredients do not change during the “reaction” of making sandwiches; they only rearrange. A common misconception is that atoms of one type of element change into a different element during a reaction rather than rearranging to form new or different molecules. It is common sense to students that cheese does not turn into bread, and therefore, the engage activity should lay the foundation for addressing this misconception. Students could be asked for other examples from everyday life in addition to the sandwich example in order to help them visualize this concept. Some ideas are making s'mores, building a bike, or making a car (using tires, a steering wheel, doors, and a frame).

Explore 1 The purpose of these video clips is to allow students to explore the concept of the law of conservation of mass and see what is happening in a sample reaction. They should notice from the mass shown on the balance that the mass did not change. The second clip is intended to begin to lay the foundation for addressing the concept that atoms do not change types but rearrange to form new or different molecules. This exploration could also be demonstrated or simulated in the classroom for kinesthetic learners who need to experience things in order to better interact with the concepts. The teacher could conduct a similar demo in person and have students discuss or write about their observations.

Explain 1 Students should gain an understanding of the law of conservation of mass and how to count atoms. It is vital that students master the concepts of subscripts and coefficients when counting atoms. They must be able to recognize if an equation is balanced or unbalanced before they can learn to complete the process of balancing for themselves. Another student misconception is that mass can be gained or lost during a chemical reaction. The section dealing with the masses of reactants and products is intended to address this misconception. Combining this information and the skill of counting atoms should help students bridge the gap from mass to atoms and see that both remain equal in a balanced chemical reaction.

Explore 2 Students are to experiment with balancing an equation through a simulation that allows them to see the atoms. This is helpful because it allows students to visualize what is taking place during a reaction. You do not want students to depend on a visual in order to balance equations, but it is key to helping them visualize the process. Because the simulation can be done by trial and error without understanding the process of balancing, it encourages students to explore the concept and make their own discoveries about how to balance if they do not remember this skill from middle school (8(5)(F)). In addition to the simulation, you also could demonstrate or act out the process of balancing using different colored circles of paper or balls to represent the different atoms.

Explain 2 The tutorial videos walk students through the process of balancing equations by showing an example and giving a step-by-step process. It is key that students master the steps in the process in order to be able to apply it to different equations. Once students have watched the video and have taken notes, they can attempt to practice the sample equations. A video explaining how to balance each of these equations is available in the related materials, and students should be encouraged to watch these videos in order to check their thought processes. It can also be beneficial to students to work through a few practice problems with a partner, particularly if a confident student is paired with a struggling student. One idea is to write an equation on a large piece of paper and have the students work out the balancing process on the poster. Each pair of students should have a different equation. When all groups have finished, students can do a gallery walk and check each other's work. If they find something they do not agree with on another group's poster, they can make the correction off to the side so that the owners of the poster can rethink their answer. It is strongly recommended that students be given more practice problems in order to fine tune their skills and until they reach mastery of this skill. The issue of balancing equations with the same element in more than one reactant or more than one product must also be addressed, as the total count of atoms must be done carefully. Finally, the Lavoisier video provides students with an understanding of the history behind the concept of the law of conservation of mass.

Elaborate Students are challenged to look at balancing equations in everyday life and apply the law of conservation of mass to the example of photosynthesis. This allows students to see the importance of the concept outside the context of a chemistry lab or pharmaceutical company. They are also asked to present an explanation for a possible change to the equation and justify their thoughts. The questions encourage students to make predictions in terms of cause and effect. Upon completion of this section of the lesson, students would benefit from an opportunity to share their thoughts with others and discuss their ideas and rationale. 

Copy and paste the link code above.

Related Items

997697-PS-GW-Resource-Logo-Update_90x90px

Accessibility

Heather gatlin.

Heather is using Smore newsletters to spread the word online.

Get email updates from Heather :

Law of Conservation of Mass

Makeup assignment.

Like this newsletter

Complete the worksheet.

Big picture

If you build a campfire like this one, you start with a big pile of logs. As the fire burns, the pile of logs slowly shrinks. By the end of the evening, all that’s left is a small pile of ashes. What happened to the matter that you started with? Was it destroyed by the fire?

Where’s the Matter?

It may seem as though burning destroys matter, but the same amount, or mass, of matter still exists after a campfire as before. Look at the sketch in Figure below . It shows that when wood burns, it combines with oxygen and changes not only to ashes but also to carbon dioxide and water vapor. The gases float off into the air, leaving behind just the ashes. Suppose you had measured the mass of the wood before it burned and the mass of the ashes after it burned. Also suppose you had been able to measure the oxygen used by the fire and the gases produced by the fire. What would you find? The total mass of matter after the fire would be the same as the total mass of matter before the fire.

Big picture

Q: What can you infer from this example?

A: You can infer that burning does not destroy matter. It just changes matter into different substances.

This burning campfire example illustrates a very important law in science: the law of conservation of mass . This law states that matter cannot be created or destroyed. Even when matter goes through a physical or chemical change , the total mass of matter always remains the same.

Q: How could you show that the mass of matter remains the same when matter changes state?

A: You could find the mass of a quantity of liquid water . Then you could freeze the water and find the mass of the ice. The mass before and after freezing would be the same, showing that mass is conserved when matter changes state.

  • Burning and other changes in matter do not destroy matter. The mass of matter is always the same before and after the changes occur.
  • The law of conservation of mass states that matter cannot be created or destroyed.

BrainPop - Username: hmstigerspop password: hmstigers

Conservation of mass - brainpop.

Law of Conservation of Mass makeup.pdf

Connect with Heather Gatlin

Design beautiful online newsletters and publish instantly..

The days of posting a newsletter around the neighborhood are over. Smore helps you create amazing pages that you’d be proud to share.

Created with

Communicate quickly and effectively with interactive newsletters..

Smore empowers educators to connect with their community, streamline school communications, and increase engagement.

Conservation of Mass

The idea of mass conservation is widespread in many fields for example chemistry, mechanics, and fluid dynamics. Historically, mass conservation was discovered within chemical reactions by Antoine Lavoisier inside late 18th century, and was of crucial importance inside progress from alchemy to the modern natural science regarding chemistry. The law of conservation of mass or  principle of mass conservation states that for any system closed to just about all transfers of matter in addition to energy.

Motorized Bicycle

Define on automatic vacuum cleaner & steam vacuum cleaner, properties of silver mica capacitor, spectrum management, integrity in character education, management styles, marketing plan outline, key employee, cyber-partisans claim they hacked belarus railway to disrupt russian troops, latest post, the welfare of pit ponies, the mexican revolutionary who avoided capture by the us for nearly 11 months, uterine microbiome, food microbiology – a branch of microbiology, economic bubble, global catastrophic risk.

IMAGES

  1. Law of Conservation of Mass. Principle of Mass Conservation States Stock Illustration

    law of conservation of mass assignment

  2. Science 8: Law of Conservation of Mass Notes

    law of conservation of mass assignment

  3. Mrs. Holden's Science Blog: SCIENCE 7 Law of Conservation of Mass One Pager Instructions

    law of conservation of mass assignment

  4. Law of Conservation of Mass Quiz by MrJacksBackPack

    law of conservation of mass assignment

  5. state the law of conservation of mass.is it applicable to the chemical reaction? elaborate your

    law of conservation of mass assignment

  6. Law of Conservation of Mass

    law of conservation of mass assignment

VIDEO

  1. law of mass action

  2. Law of conservation of momentum.#astrology #viral

  3. Eight Science Law of conservation of Mass 28.9.23

  4. LAW OF CONSERVATION OF MASS PART 2( ବସ୍ତୁତ୍ଵର ସଂରକ୍ଷଣ ନିୟମ )

  5. Calculations using the law of conservation of mass

  6. information about law of conservation of mass (chemistry)

COMMENTS

  1. What Is an Example of the Law of Conservation of Mass?

    An example of the law of conservation of mass is the combustion of a piece of paper to form ash, water vapor and carbon dioxide. In this process, the mass of the paper is not actually destroyed; instead, it is transformed into other forms.

  2. How Are Mass and Energy Conserved When Food Is Digested?

    The mass that is neither incorporated into the animal’s body nor passed as waste is converted directly into energy. Even though the mass of a given food item decreases when it is eaten, the Law of Conservation of Mass-Energy remains unbroke...

  3. What Is the Equation for Conservation of Momentum?

    One of the most important laws of physics, the law of conservation of momentum, can also be expressed as “?m*v = constant”, where “m” is mass of the objects and “v” is their respective velocity. This dictates that the net amount of momentum...

  4. Law of Conservation of Mass

    According to the law of conservation of mass, the mass of the reactants must be equal to the mass of the products for a low energy thermodynamic process. It is

  5. 3.7: Conservation of Mass

    The law of conservation of mass states that matter cannot be created or destroyed in a chemical reaction. For example, when wood burns, the mass

  6. Law of Conservation of Mass: Definition, Formula, Examples & FAQs

    The law of conservation of mass states that the mass can neither be created nor destroyed in a chemical reaction. This implies, in a closed

  7. Law of Conservation of Mass

    One of these is called the law of conservation of mass, which states that during a chemical reaction, the total mass of the products must be

  8. The Law of Conservation of Mass

    The law of conservation of mass states that in a closed chemical reaction system, the total mass of all reactants will be equal to the total mass of all

  9. Law of Conservation of Mass #2

    Use the LAW OF CONSERVATION OF MASS to fill out the missing information in the table below. Use the example #1 as a guide. Mass of Reactants = Mass of

  10. Conservation of Mass—It's the Law!

    Use with a combination of teacher computer/projector and individual student computers (in a computer lab or other 1:1 environment). • Assign to students as work

  11. Law of Conservation of Mass

    Law of Conservation of Mass - Makeup Assignment by Heather Gatlin | This newsletter was created with Smore, an online tool for creating beautiful

  12. Lesson 8: Conservation of Mass

    Continued practice assignment: Students are given 10 cards each

  13. Conservation of Mass

    The law of conservation of mass or principle of mass conservation states that for any system closed to just about all transfers of matter in addition to energy.

  14. Law of Conversation of Mass Assignment By: Dev Raval

    The only equation that demostrates "Law of conservation of Mass" is a balanced equation. Chemical Equations. A chemical equation is the symbolic representation